Búsqueda avanzada

Deep learning. "Principios y fundamentos."

Autor/es:


Deep learning.

Sinopsis
En este libro se introducen los conceptos fundamentales del aprendizaje profundo (Deep learning, DL) mediante el uso de redes neuronales artificiales (Artificial neural networks, ANN).
El lector podrá encontrar una revisión completa de las técnicas avanzadas más usadas en estos campos.
El enfoque del libro es claramente descriptivo, con el objetivo de que el lector entienda los conceptos e ideas básicos detrás de cada algoritmo o técnica.
La primera parte del libro constituye una introducción al aprendizaje profundo, en general, y a las redes neuronales, en particular.
En la segunda parte se describe el funcionamiento de las redes neuronales, partiendo de conceptos básicos (como la estructura de una neurona, las principales funciones de activación, etc.) hasta alcanzar conceptos avanzados (optimización del rendimiento de las redes neuronales o estrategias para evitar el problema del sobreentrenamiento).
La tercera parte presenta los fundamentos teóricos, estructura y principales arquitecturas de las redes neuronales convolucionales (Convolutional neural networks, CNN) y su aplicación en el procesamiento de imágenes.
Finalmente, el cuarto bloque de este texto se centra los fundamentos teóricos, estructura y principales arquitecturas de las redes neuronales recurrentes (Recurrent neural networks, RNN) y su aplicaciones para el procesamiento de series temporales y textos.

Biografía del autor:

Editorial EDITORIAL UOC

Fecha publicación 30-12-2019

Edición : 1

Número de páginas : 257

ISBN : 978-84-9180-656-1

Colección: | TECNOLOGÍA

Encuadernación: RUSTICA (TAPA BLANDA)

Tamaño:  235 x 155